Posted in biology, science

How do we hear?

In order to hear the world around us, humans and other mammals rely on vibrations travelling in the air. To interpret these vibrations, the ear has evolved a complex system of canals and tiny hair-like protrusions, all working in harmony to generate sound as we know it.

The ear is a complex structure composed of three distinct parts, each with separate functions. The outer ear (or pinna) is the external section that protrudes from the side of the head. Responsible for the placement of sounds in relation to our bodies, the complex arches and valleys funnel vibrations into the ear canal and create a three dimensional soundscape.

Once the vibrations begin to move down the ear canal, they enter the middle ear. This section is composed of the auditory canal, which terminates at the eardrum (also known as the tympanic membrane). The eardrum is then attached to three tiny bones called ossicles, surrounded by a small pocket of air. Individually, these bones are the malleus, incus and stapes (or alternatively, the hammer, anvil and stirrup). The ossicles are then attached to a fluid-filled structure called the cochlea. It is here that the inner ear begins.

The primary function of the cochlea is to convert vibrations into electrical impulses to be sent down the auditory nerve and interpreted by the brain. In order to change the vibrations to impulses, a rather ingenious method is employed. Once the vibration reaches the cochlea from the ossicles, it travels down the basilar membrane whereupon it is detected by approximately 16,000 to 20,000 hair-like cells called cilia. These cilia are attached to a specialised part of the ear canal called the Organ of Corti, and it is here that the raw vibrations are converted to nerve impulses and passed along the auditory nerve to the brain. This is achieved by the deformation of the cilia – as they are moved by the vibrations, specialised ion channels are pulled open and the resultant influx of potassium and calcium ions depolarises the cells and produces an action potential.

So how are humans able to hear such a spectrum of different sounds and pitches? Well, it’s all down to the tapered shape of the cochlea. Due to their individual amplitudes, different frequencies of sound wave peak at different times as they travel down the ear canal. As higher frequency waves have larger amplitudes, they are not able to travel as far as lower frequency waves. Due to this, each section of cilia is sensitive to a particular frequency of wave – this is what enables the detection of such a vast spectrum of sound.

Tabitha Watson

Image Credit:

[http://dt7v1i9vyp3mf.cloudfront.net/styles/news_large/s3/imagelibra/E/Ear_01.jpg?W0hbNd_Wzq4sD071RFwOhUnzgBMQHi22=&itok=VJ-3sBGY]

Advertisements

2 thoughts on “How do we hear?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s